
Cptr350 Chapter 4 — Control Hazards 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 4

The Processor
Control Hazards

Review

n All modern day processors use pipelining.
n Pipelining doesn’t help latency of single task, it helps
throughput of entire workload.

n Potential speedup: a CPI of 1 and faster Clock Cycle.
n Pipeline rate limited by slowest pipeline stage

n Unbalanced pipe stages make for inefficiencies.
n The time to “fill” pipeline and time to “drain” it can

impact speedup for deep pipelines and short code runs.

n Must detect and resolve hazards
n Data and control hazards.

Cptr350 Chapter 4 — Control Hazards 2

Review: Five Instruction Sequence

Once the
pipeline is

full, one
instruction is

completed
every cycle,

so CPI = 1

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Time to fill the pipeline

Review: Datapath with Hazard Detection

Cptr350 Chapter 4 — Control Hazards 3

Control Hazards
n Control hazards occur when the flow of instruction addresses

is not sequential
n Unconditional branches (j, jal, jr)
n Conditional branches (beq, bne)
n Exceptions and interrupts

n Possible approaches
n Stall (impacts CPI).
n Move decision point as early in the pipeline as possible,

thereby reducing the number of stall cycles.
n Delay decision (requires compiler support).
n Predict and hope for the best!

n Control hazards occur less frequently than data hazards, but
there is nothing as effective against control hazards as
forwarding is for data hazards.

Branch Hazards
n If branch outcome determined in MEM:

PC

Flush these
instructions
(Set control
values to 0)

Cptr350 Chapter 4 — Control Hazards 4

Reducing the Delay of Branches
n Move the branch decision hardware back to the EX stage

n Reduces the number of stall (flush) cycles to two.
n Add hardware to compute the branch target address and evaluate the

branch decision in the ID stage
n Reduces the number of stall (flush) cycles to one

n But now need to add forwarding hardware in ID stage.
n Computing branch target address can be done in parallel with

RegFile read (done for all instructions – only used when needed).
n Comparing the registers can’t be done until after RegFile read, so

comparing and updating the PC adds a mux and a compator to
the ID timing path.

n For deeper pipelines, branch decision points occur even later in the
pipeline, incurring more stalls.

Example: Branch Taken

Cptr350 Chapter 4 — Control Hazards 5

flush

Jumps Incur One Stall

I
n
s
t
r.

O
r
d
e
r

j

j target

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

n Fortunately, jumps are very infrequent – only 3% of the
SPECint instruction mix.

Fix jump
hazard by
waiting –

flushA
LUIM Reg DM Reg

n Jumps target not decoded until ID, so one flush is needed
n To flush, zero the instruction field of the IF/ID pipeline

register (turning it into a nop).

Supporting ID Stage Jumps

ID/EX

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

EX/MEM

MEM/WB

Control

ALU
cntrl

Forward
Unit

Branch

PCSrc

Shift
left 2

Add

Shift
left 2

Jump

PC+4[31-28]

0

Cptr350 Chapter 4 — Control Hazards 6

Data Hazards for Branches
n If a comparison register is a destination of 2nd or 3rd

preceding ALU instruction.

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

n Can resolve using forwarding.

Data Hazards for Branches

n If a comparison register is a destination of preceding
ALU instruction or 2nd preceding load instruction
n Need 1 stall cycle.

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

Cptr350 Chapter 4 — Control Hazards 7

Data Hazards for Branches

n If a comparison register is a destination of immediately
preceding load instruction
n Need 2 stall cycles.

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

Branch Prediction

n Static branch prediction
n Based on typical branch behavior.
n Example: loop and if-statement branches

n Predict backward branches taken.
n Predict forward branches not taken.

n Dynamic branch prediction
n Hardware measures actual branch behavior

n Records recent history of each branch instruction.
n Assume future behavior will continue the trend

n When wrong, stall while re-fetching, and update history.

Cptr350 Chapter 4 — Control Hazards 8

Static Branch Prediction

n Predict not taken – always predict branches will not be
taken, continue to fetch from the sequential instruction
stream, only when branch is taken does the pipeline stall
n If taken, flush instructions started after the branch.
n Ensure that those flushed instructions haven’t changed the

machine state – automatic in the MIPS pipeline since
machine state changing operations are at the tail end of
the pipeline.

n Restart the pipeline at the branch destination.

Static Branch Prediction - Continued

n Predict taken – predict branches will always be taken
n Predict taken always incurs one stall cycle (if branch

destination hardware has been moved to the ID stage)
because of the need to calculate the target address.

n For deeper pipelines, branch penalty increases and a
simple static prediction scheme will hurt performance.
With more hardware, it is possible to try to predict
branch behavior dynamically during program execution.

Cptr350 Chapter 4 — Control Hazards 9

Dynamic Branch Prediction

n Branch prediction buffer (aka branch history table)
n Indexed by recent branch instruction addresses.
n Stores outcome (taken/not taken).

n To execute a branch
n Check table, expect the same outcome as before.
n Start fetching from fall-through or target.
n If wrong, flush pipeline and flip prediction.

Dynamic Branch Prediction

n A Branch History Table (BHT) in the IF stage
addressed by the lower bits of the PC, contains bit(s)
that tells whether the branch was taken the last time it
was executed.
n Prediction bit may predict incorrectly (may be a wrong prediction

for this branch on this iteration, or may be from a different branch
with the same low order PC bits) but this doesn’t affect
correctness, just performance

n Branch decision occurs in the ID stage after determining that
the fetched instruction is a branch and checking the
prediction bit(s).

n A 4096-bit Branch History Table varies from 1%
misprediction (nasa7, tomcatv) to 18% (eqntott).

Cptr350 Chapter 4 — Control Hazards 10

Branch Target Buffer
n The BHT predicts when a branch is taken, but does not tell where

its taken to.
n A Branch Target Buffer (BTB) in the IF stage caches the branch target

address, so if the branch is taken we have the address of where it
branched to last time.

n But we also need to fetch the next sequential instruction in case the
branch is not taken. The prediction bit in the branch history table selects
which “next” instruction will be loaded at the next clock edge

n Or, the BTB can cache the “branch taken” instruction while the
instruction memory is fetching the next sequential instruction.

n If the prediction is correct, stalls can be avoided no
matter which direction the branch takes.

Read
Address

Instruction
Memory

PC

0

BTB

1-Bit Dynamic Predictor
n Inner loop branches mis-predicted twice

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer

n Mis-predict as taken on last iteration of inner loop.
n Then mis-predict as not taken on first iteration of

inner loop next time around.

Cptr350 Chapter 4 — Control Hazards 11

2-Bit Dynamic Predictor

n Only change prediction on two successive mis-
predictions.

Processor Specifications

• Specification of the ARM Cortex-A8 and the Intel
Core i7 920.

Cptr350 Chapter 4 — Control Hazards 12

ARM Cortex A8 Benchmarks

• CPI on ARM Cortex A8 for the Minnespec benchmarks, which are small
versions of the SPEC2000 benchmarks. These benchmarks use much
smaller inputs to reduce running time by several orders of magnitude.
The smaller size significantly underestimates the CPI impact of the
memory hierarchy (See Chapter 5).

Core I7 CPI

CPI of Intel Core i7
920 running
SPEC2006 integer
benchmarks.

Cptr350 Chapter 4 — Control Hazards 13

Core I7 Branch Mis-predictions

• Percentage of branch mis-predictions and wasted work due to
unfruitful speculation of Intel Core i7 920 running SPEC2006
integer benchmarks.

Summary
n All modern day processors use pipelining for performance (a CPI

of 1 and a fast clock cycle).
n Pipeline clock rate limited by slowest pipeline stage – so

designing a balanced pipeline is important.
n Must detect and resolve hazards

n Structural hazards – resolved by designing the pipeline
correctly.

n Data hazards
n Stall if necessary - impacts CPI.
n Forwarding - requires hardware support.

n Control hazards – make branch decision as early as possible
n Stall - impacts CPI.
n Delay decision - requires compiler support.
n Static and dynamic prediction - requires hardware support.

